
Critical Segment Based Real-time E-Signature for
Securing Mobile Transactions

Yanzhi Ren1, Chen Wang1, Yingying Chen1, Mooi Choo Chuah2, Jie Yang3

1Department of ECE, Stevens Institute of Technology, Hoboken, NJ 07030
{yren2, cwang42, yingying.chen}@stevens.edu

2Department of CSE, Lehigh University, Bethlehem, PA 18015

chuah@cse.lehigh.edu
3Department of CS, Florida State University, Tallahassee, FL 32306

jyang5@fsu.edu

Abstract—The explosive usage of mobile devices enables con-
ducting electronic transactions involving direct E-signature on
such devices. Thus, user signature verification becomes critical to
ensure the success deployment of online transactions such as ap-
proving legal documents and authenticating financial transactions.
Existing approaches mainly focus on user verification targeting the
unlocking of mobile devices or performing continuous verification
based on a user’s behavioral traits. Few studies provide efficient
real-time user signature verification. In this work, we propose
a critical segment based online signature verification system
to secure mobile transactions on multi-touch mobile devices.
Our system identifies and exploits the segments which remain
invariant within a user’s signature to capture the intrinsic signing
behavior embedded in each user’s signature. Our system further
extracts useful features from a user’s signature that describe both
the geometric layout of the signature as well as physiological
characteristics in the user’s signing behavior. Our experimental
evaluation of 25 subjects over six months time period shows that
our system is highly accurate in provide signature verification
and robust to signature forging attacks.

I. INTRODUCTION

Mobile devices such as smartphones and tablets have become
increasingly popular and play important roles in our daily
lives. In particular, mobile devices equipped with touch screens
and various communication interfaces have been used for sup-
porting anytime-anywhere mobile services, e.g. e-commerce
and online banking. For example, the "Go Mobile” trend has
boosted the mobile transactions with 118% average growth
every year in the United States, and the percentage increase
is even higher in Asia-pacific region [1]. As e-commerce
related applications become more prevalent, more and more
sensitive information, such as financial data and credit card
information are sent through transactions using mobile devices.
Real-time user signature verification on mobile devices for on-
line transactions becomes crucial for preventing unauthorized
access, approving legal documents, or authenticating financial
transactions.

Recent development focuses on providing secure methods to
unlock mobile devices by utilizing a user’s finger movement
patterns or finger gestures captured on the touch screens [2]–
[4] as opposed to traditional password based authentication.
These methods are not suitable for securing mobile transac-
tions. The online handwritten signature is one of the legally
accepted mechanisms used to support real-time transactions.
Previous work [5], [6] involves acquiring the user’s signature
from traditional digitizers with a stylus. As the multi-touch
screen captures the user’s signing behavior during the signature

signing process, it could provide a richer set of information
than the traditional digitizer. Sae-Bae Napa et.al [7] shows
the initial success of verification on signatures directly signed
by the user’s finger on touch screens. This approach utilizes
machine learning mechanisms to extract features from the
whole signature trajectory but it does not consider signatures
written by multiple fingers.

When using his/her finger to sign on touch screens, each
individual has an intrinsic signature signing behavior that has
not been studied in the previous work. Such a signing behavior,
if captured, could largely increase the accuracy of signature
verification and effectively combat adversarial signature forg-
ing activities. Toward this direction, we design a signature
verification system that has the capability to identify the critical
segments in each individual user’s signature and extract unique
features to describe a person’s intrinsic signing behavior. Sev-
eral challenges need to be addressed when developing such a
system: First, the user’s signature is signed on mobile devices
with fingers instead of a stylus, resulting in extensive variations
in the signatures. Second, the system should be resilient to
signature imitation attacks as an adversarial can observe and
mimic a legitimate user’s signature. Third, the system should
be robust to various signature sizes and orientations since the
same user can write his signature with such variations under
different scenarios.

Our proposed system consists of three main components
to cope with these challenges: Critical Segment Extraction,
Feature Extraction and Signature Normalization and Inter-

polation. Given a signature collected from the touch screen,
Signature Normalization and Interpolation is performed to
reduce the impact of signature geometric distortions caused
by different writing sizes and orientations on touch screens.
Critical Segment Extraction is the core component that captures
the intrinsic user signing behaviors by identifying the segments
which remain stable within the user’s genuine signature. The
extracted critical segments are typically invariant even in the
presence of extensive variations in the user’s signature, and
hence hard for adversarials to imitate. During Feature Extrac-

tion, our system extracts useful features to describe both the
geometric layout of the signature as well as the user’s signing
behavior by leveraging the rich set of information enabled
by touch screens. In addition, our system supports signature
signing using multiple fingers. We utilize two physiological
features when signatures are signed with multiple fingers to
improve accuracy of signature verification.
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We summarize our main contributions as follows:
• We design a signature verification system leveraging the

multi-touch screen for mobile transactions.
• We propose to extract critical segments which capture

a user’s intrinsic signing behavior for accurate signature
verification.

• Our system exploits not only the geometric layout of the
user’s signature but also his behavior and physiological
characteristics, such as writing speed, touch pressure,
distance pattern and correlation between fingers for attack-
resilient signature verification.

• We show that our system is robust to adversarial behaviors
of forging a user’s signature including knowing how his
signature looks like or even having the ability to observe
and imitate his signature.

• We evaluate our system with 25 subjects over six-month
time period. The results show that our system is highly
accurate and robust in signature verification under various
scenarios.

The rest of the paper is organized as follows. We first present
the related work in Section II. We then describe the system
model and attack model in Section III. The core component
of critical segment identification is presented in Section IV.
Next, we present feature extraction and signature normalization
in Section V and Section VI respectively. In Section VII, we
validate the feasibility and performance of our proposed system
through real experiments. Finally, we conclude our work in
Section VIII.

II. RELATED WORK

Existing methods for user authentication on mobile de-
vices can be categorized into two major classes: schemes for
unlocking mobile devices and schemes for continuous user
authentication. To unlock screens, some mobile devices rely on
manual entry of a secret password or PIN number. This method
is insufficient as many people only go through this process once
when the device is switched on [8]. There has also been active
work in using biometric information for user authentication on
mobile devices such as fingerprints [9]. However, fingerprint
scanners are not always available on smartphones, making
it less suitable for user authentication on mobile devices.
Several gesture based user authentication schemes have also
been proposed [10], [11]. The basic idea of these schemes is
users can be authenticated by making a gesture in the air while
holding the mobile phone. Such gesture is captured through the
accelerometer embedded in the phone for user authentication.
However, the gesture based authentication is vulnerable to
replay attacks in which attackers can observe and replicate the
authentication information. Along this direction, recent work
proposes to use users’ finger gestures captured on touch screens
for user authentication [2], [4], [12], [13]. These methods
rely on the finger gesture patterns on the touch screens as
authentication information. However, all of the above schemes
consider unique features in simple gestures for either unlocking
mobile devices or performing user authentication, and they
cannot be easily applied in signature verification scenario.

Furthermore, there are schemes on continuous user au-
thentication systems relying on finger movements [3] or gait
patterns [14]. The purpose of such systems is to continuously

authenticate users during the whole process of system exe-
cution. However, these behaviors did not happen frequently
on mobile devices, because people hardly use mobile devices
while walking or do heavy texting on them. Thus, it is difficult
to collect a sufficient number of behavior traits for online
transaction verification.

Our work focuses on the aspect of providing accurate online
signature verification. Since signature is critical in many online
transactions, several work have been proposed [5], [6], [15].
In these papers, a user utilizes a stylus to sign his signature
on the touch screen of mobile devices. The information of the
signature is then captured and compared with a pre-constructed
template. Moving forward, new development enables the user
directly sign his signature using finger on touch screens without
the requirement of a stylus pen [7]. This approach is compu-
tationally efficient for verifying signatures. It represents the
online signature with a feature vector derived from attribute
histograms extracted from each signature. This system treats
the user’s signature as a whole and does not consider the
intrinsic signing behavior of the user, which results in stable
critical segments in signatures of the same user.

Our work is different in that we develop a secure and robust
online signature verification system by capturing the intrinsic
user signing behaviors through identifying the segments which
remain invariant within the user’s signatures. Moreover, our
system verifies signatures not only based on the geometric
layout of a signature but also based on the user’s behavior and
physiological characteristics. Additionally, signing signatures
using multiple fingers (e.g., two fingers) are also considered to
further improve the verification accuracy.

III. FRAMEWORK OVERVIEW

In this section, we first introduce the challenges and design
goals of our signature verification system. We then present
the adversary model and provide an overview of our signature
verification system.

A. Challenge and Design Goals

The goal of our system is to perform online signature
verification on multi-touch mobile devices for securing mobile
transactions. In particular, our system is designed to meet the
following requirements:

Robust to Signature Variations. When a user signs his
signature on touch screen with his finger instead of a stylus, the
resulting signature could suffer from extensive variations under
various signing conditions such as holding the device in-hand
or putting the device on the table when signing. Our system
aims to identify and extract the stable segments embedded in
the signature to capture the user’s intrinsic signing behavior
for accurate signature verification.

High Accuracy. An adversary can observe and imitate a
user’s signature to pass online transaction verification. Our
system should be robust under such adversarial behaviors by
accepting the legitimate user’s signature while rejecting forged
signatures.

Adaptive to Various Writing Sizes or Orientations. Users
may write their signatures with different sizes and orientations
on the touch screen. Our system should be scalable to handle
these scenarios for effective signature verification.
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Fig. 1. Overview of our signature verification system

Computationally Feasible on Smartphones. Due to the
limited computational resources at the mobile devices, the
designed algorithms should be lightweight in order to perform
signature verification in real time.

B. Adversary Model

An adversary may attempt to forge a legitimate user’s
signature patterns to complete certain online transactions to
gain benefits. For example, adversaries can obtain some knowl-
edge of the user’s signature, and sign an unauthorized online
financial transaction or change the terms of an online contract
through signature fraud. We consider two possible adversarial
behaviors as described below.

• Random Attack: The adversary only has the knowledge
of the spelling of the legitimate user’s signature without
the knowledge of geometric layout of the signature.

• Observe and Imitate Attack: In this case, the adversary
is more advanced by not only having the knowledge of
the spelling of the legitimate user’s signature but also
obtaining chances to observe how the legitimate user signs
his signature, i.e., he possesses the geometric layout of the
legitimate user’s signature when forging it.

C. System Overview

By leveraging a rich set of information provided by multi-
touch screen, our system identifies the user’s signing behavior
and exploits the geometric layout of the signature and the user’s
behavior and physiological characteristics to achieve accurate
and robust online signature verification. It identifies the critical
segments in each individual user’s signatures and extracts
unique features to describe the user’s intrinsic signing behavior.
The features are selected such that they can describe the
invariance and stability of a particular user’s signature, which
is hard for an adversary to imitate. In particular, we design two
groups of features: the first group consists of the coordinates
(including x and y dimensions) of a signature describing
the geometric layout of the signature, and the second group
consists of the velocity (on both x and y dimensions), touch

pressure, distance pattern and correlation between two fingers,
which capture the behavior and physiological characteristics of
the user during the signature signing process. By comparing
the extracted features of a signature to the pre-constructed
user signature profile, our system makes decision on whether
to accept or reject the input signature based on the similarity
comparison.

As shown in Figure 1, our system consists of four ma-
jor components: Signature Normalization and Interpolation,
Feature Extraction, Critical Segment Extraction and Signa-

ture Comparison. Given a signature captured on the touch
screen, the system first applies normalization and interpola-
tion to deal with the signature geometric distortions caused
by different writing sizes, orientations and locations on the
touch screen under various signing conditions. In the Feature

Extraction component, the system then extracts features from
the normalized signatures to capture the geometric layout
of the signature and the user’s behavior and physiological
characteristics. Critical segments extraction is used to capture
the user’s intrinsic signing behaviors and identify the feature
segments that remain stable within the user’s signatures. The
extracted critical segments are usually invariant in the presence
of variations in the user’s signatures, and hard for attackers to
imitate. After that, the signature verification is performed by
calculating a similarity score between the extracted features
from the input signature and the pre-constructed user profile
which is constructed when the user enrolls in the verification
system. Based on the similarity score between the testing
signature and the user profile, our system makes decision on
whether to accept or reject the user.

IV. CRITICAL SEGMENT IDENTIFICATION

A signature can be decomposed into several stroke segments.
However, only a few of these decomposed segments are
invariant across a set of signatures a user signs. Such segments
reflect the user’s intrinsic signing behavior, and we refer to
them as critical segments. Existing work [7], [15] on signature
verification did not consider capturing critical segments for
signature verification. In our approach, we extract critical
segments that reflect the user’s intrinsic signing behavior to
increase the accuracy of signature verification and combat
adversarial signature forging activities.

To identify the critical segments in a user’s signature, we
develop an algorithm by examining and comparing the user’s
genuine signatures. Our algorithm takes a pair of signatures
(which can be described by the features discussed in Section V)
from the user as inputs and compare them using the dynamic
time warping (DTW) [16] technique. Given a feature sequence
used to represent the signature (e.g., x and y coordinates
of the signature, the signing pressure of the signature), the
resulting coupling sequence from DTW denotes an optimal
alignment between two feature sequences. From [17], we know
that the direct matching samples (DMSs) in the coupling
sequence represent the segments without significant distortion
between the two input signatures. Thus, the DMSs extracted
from the coupling sequence can be utilized to derive a weight
vector which denotes the similarity between two signatures. To
capture the invariance of the signatures, we repeat the above
comparison between each pair of the user’s genuine signatures
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in a signature pool, and then average over all the weight vectors
to extract the critical segments as these segments have high
similarity among a group of genuine signatures.

Critical Segment Identification Algorithm. To simplify
the description of the critical segment extraction algorithm,
we assume a signature is already normalized and interpolated
to a length L and five features (i.e., f1 to f5 including the
coordinates, the velocities and touch pressure) are used for
describing the signature. The details of signature normaliza-
tion and feature extraction are presented in Section VI and
Section V respectively. We then assume {fq

u, 1 ≤ q ≤ D} to
be a set of the u-th features (1 ≤ u ≤ 5) extracted from
D genuine signatures. Thus, the weight vector of the u-th
feature from the pair of q1-th and q2-th signatures can be
represented as: wq1,q2

u with 1 ≤ q1, q2 ≤ D and q1 6= q2.
We then use the coupling sequence generated by the DTW
algorithm to estimate the weight value. For each feature
sequence (i.e. u-th feature), the dynamic warping procedure
generates a coupling sequence CSq1,q2 with a length of K
as: CSq1,q2 = {(fq1

u (i, jk), f
q2
u (i, j′k)) , 1 ≤ k ≤ K}, where

K ≤ 2L and 1 ≤ jk, j
′
k ≤ L. The i denotes that the feature is

extracted from the i-th finger in case multiple figures are used
for signing signatures. A direct matching sample (DMS) in the
coupling sequence is defined as a feature sample in the q1-
th signature which has an one-to-one coupling with a sample
in the q2-th feature sequence. In other words, the matched
sample fq1

u (i, jk) is a DMS if and only if both fq1
u (i, jk)

and fq2
u (i, j′k) only appear once in the coupling sequence.

The DMSs represent the signature region without significant
distortion between two signature features. We thus define a
weight sample wq1,q2

u (i, j) as:

wq1,q2
u (i, j) =

{

1 if fq1
u (i, j) is DMS in CSq1,q2

0 otherwise
(1)

To generalize the findings from each pair of signatures, our
algorithm can examine a group of signatures from the same
user and average the weight vectors over every pair of the
signatures. Thus, the final weight vector of a particular feature
for the user can be represented as:

w̄u(i, j) =

D
∑

q1=1

D
∑

q2=1
q2 6=q1

wq1,q2
u (i, j)

D × (D − 1)
, 1 ≤ j ≤ L (2)

Each average weight value w̄u(i, j) which ranges from 0 to 1
indicates the stability of the j-th sample of the u-th feature of
that user’s signatures. Intuitively, a larger value denotes better
stability. Our algorithm treats the samples with higher average
weights more significantly during the signature comparison
procedure as they can represent the user’s intrinsic signing
behaviors. The segments with larger average weight values are
identified as critical segments of the user’s signature.

Example. Figure 2 shows an example on how a weight
vector is extracted from a user’s signatures by applying our
critical segment identification algorithm. In this example, we
collect two original signatures (i.e., signature 1 and 2) from the
same user, and the touch pressure feature (i.e., f5) is used for
illustration. To simplify the description of the algorithm, we
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Fig. 2. Illustration of critical segment identification: (a) Two genuine pressure
feature collected from a user; (b) Weight vector extraction by utilizing direct
matching samples (DMSs).

only use a portion of the pressure features (i.e., 10 samples).
Figure 2 (a) plots the pressure features extracted from two
signatures. From this figure, we observe that the first 4 samples
are very similar, while the rest samples between two signatures
differ significantly. We then generate the coupling sequence
between two features based on DTW. In Figure 2 (b), the direct
matching samples (DMSs) in the coupling sequence are shown
as solid dots and the non-direct matching samples are shown
as hollow dots. The weight vector is thus extracted according
to the coupling sequence using Equation 1 and it is shown on
the top of the figure. We find that the first four samples are
assigned with a higher weight (i.e., 1) and other samples are
assigned with a lower weight (i.e., 0). These four samples thus
can be identified as one of the critical segments. This example
shows that our critical segment identification algorithm can
extract the invariant segments embedded in the signature for
capturing the user’s intrinsic signing behavior.

V. FEATURE EXTRACTION AND SIGNATURE VERIFICATION

In this section, we first present the important features we
used in our signature verification system. We then describe
how to construct user signature profiles using these features.
Next, we discuss the metrics we used for signature verification.

A. Feature Extraction

The multi-touch screen provides rich set of information to
describe a user’s signature. In particular, when the user signs
a signature with one or multiple fingers on the multi-touch
screen, a sequence of touch events are generated and captured
by the screen. Every touch event is characterized by the
following information: a finger ID uniquely assigned to each
finger, x and y coordinates of the touch point, pressure, and the
time stamp of the event. We thus can use such information as
the basis to describe the characteristic of signature that consists
of a series of touch events.

Based on the information of each touch event, our signature
verification system extracts several features to describe both
the geometric layout of the signature as well as the user’s
signing behavior. Moreover, if the user signs the signatures
using multiple fingers, we further examine two physiological
features to enhance the performance of signature verification
system. We assume the signature consists of L touch events
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after normalization and interpolation, and is performed by one
or more fingers (the number of fingers is denoted as M ). We
will describe details of conducting signature normalization and
interpolation in Section VI. The signature then can be repre-
sented as: {x′′(i, j), y′′(i, j), p′′(i, j), 1 ≤ i ≤ M, 1 ≤ j ≤ L}.
We next detail seven features we used in our verification
system.

1) x coordinates and y coordinates: The x and y coor-
dinates of the touch event sequence during signing process
describe the geometric shape of the signature. The x and y
coordinates of the extracted critical segments further represent
the invariant geometric layout of the user’s signatures. We thus
use the x and y coordinates as the first (i.e., f1) and second (i.e.,
f2) feature to characterize the geometric shape of a signature.

{(

f1(i, j)
f2(i, j)

)

=

(

x′′(i, j)
y′′(i, j)

)

,1≤i≤M,1≤j≤L

}

(3)

2) x velocity, y velocity and touch pressure: As the ge-
ometric shape of a signature can be easily observed and
imitated by an adversary, we further propose three features
to enhance the security of our system. These three features,
the x and y velocities and the touch pressure, are used to
capture the user’s signing behavior during the signing process.
These features are very hard, if not impossible, for adversity
to observe and imitate. Moreover, each user usually has his/her
own signing behavior during his/her signing process. Thus,
these three features are good discriminators for accurate and
attack-resilient signature verification. Specifically, the features
of x velocity (i.e., f3), y velocity (i.e., f4) are represented as
follows:











(

f3(i, j)
f4(i, j)

)

=







x′′(i,j)−x′′(i,j−1)
∆t

y′′(i,j)−y′′(i,j−1)
∆t






,1≤i≤M,1≤j≤L











(4)

The ∆t denotes the time interval between two consecutive
touch events. The touch pressure feature (i.e., f5) is denoted
as: {f5(i, j) = p′′(i, j), 1 ≤ i ≤ M, 1 ≤ j ≤ L}. The pressure
value ranges from 0 to 1 with 1 and 0 representing the
maximum pressure and no pressure at all respectively.

3) Distance pattern between fingers and two-finger signa-

ture correlation: The multi-touch screens on mobile devices
allow users to sign their signatures using more than one finger
and each finger will generate a sequence of touch events.
In this work, we only consider two fingers (i.e., M = 2)
as users barely use three or more fingers on touch screen
simultaneously. Given more than one fingers are used, we
further propose two additional features to capture the users’
physiological uniqueness between two fingers. These features
can be utilized to further enhance the performance of our
signature verification system.

Specifically, we observe that the distance pattern between
two fingers is often unique for each person due to the unique-
ness of a person’s hand/finger size. We thus propose the sixth
feature as distance pattern between two fingers (i.e., f6) and it
is defined as:

{f6(j)=
√

(x′′(1,j)−x′′(2,j))2+(y′′(1,j)−y′′(2,j))2,1≤j≤L} (5)

Moreover, we find that a user usually has a consistent cor-
relation between the movements of two fingers during signing
process, and different people may have different degrees of
correlation between two fingers. We thus use this information
as a complementary feature in our signature verification sys-
tem. Specifically, the seventh feature, correlation between two
fingers (i.e., f7) is defined as follow:

f7 = corr

{(

{x′′(1, j)}Lj=1

{y′′(1, j)}Lj=1

)

,

(

{x′′(2, j)}Lj=1

{y′′(2, j)}Lj=1

)}

(6)

where corr denotes the Pearson correlation coefficient (PC-
C) [18], which measures the degree of the linear relationship
between two given matrix.

4) Feasibility Study: We provide a feasibility study on how
these features are similar for the same user and differ for
different users by illustrating 20 signatures for each of two
users with 10 single-finger based signatures and 10 multiple-
finger based signatures. Figure 3 plots the seven features (i.e.,
f1 to f7) of these two users. Specifically, Figure 3 (a) to (f)
present the feature patterns of f1 to f6 from three randomly
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selected signatures of each user, respectively. Whereas Figure 3
(g) shows the cumulative distribution function (CDF) of the two
finger signature correlation (i.e., f7) values for each user’s 10
multiple-finger based signatures. We observe that the feature
patterns/values for the same user are very similar, while the
features patterns/values for different users differ significantly.
These observations show the feasibility of using these seven
proposed features for signature verification.

B. User Signature Profile Construction and Signature Com-

parison

In this subsection, we describe how to construct user sig-
nature profile when a user enrolls in the system and how
to compare the input signature with the pre-constructed user
signature profile for verification.

1) Creation of User Signature Profile: The user signature
profile creation phase starts when a user enrolls in the system.
The user will be prompted to input D genuine signatures. The
system first extracts features from these D genuine signatures
by using the steps of Signature Normalization (discussed in
Section VI) and Feature Extraction. The extracted features
together with their associated weight vectors derived from
Critical Segment Identification are used as the user’s signature
profile. Based on the number of fingers used in signing signa-
tures, two different user signature profile creation procedures
are performed.

Single-finger Based Signature. If a single finger is used
to sign a signature, only the first five features (i.e., f1 to f5)
are used. We first compute the average of each feature over
D signature samples and use {f̄u, 1 ≤ u ≤ 5} to denote the
average feature values for the x and y coordinates, x and y
velocities and pressure. We then extract the weight vectors
for each feature as discussed in Section IV, and they are
represented as {w̄u, 1 ≤ u ≤ 5}. The {f̄u, 1 ≤ u ≤ 5} and
{w̄u, 1 ≤ u ≤ 5} are then used as the user signature profile.

Multiple-finger Based Signature. If multiple fingers are
used to sign a signature, we add two additional features, namely
the distance pattern between fingers (i.e., f6) and the two-
finger signature correlation (i.e., f7). Similarly, we compute
the average of each feature over D signatures and use f̄6 and
f̄7 to denote them respectively. Note that there is no weight
vectors for f6 and f7. This is because the distance pattern
between fingers (i.e., f6) is a physiological feature which
remains relatively invariant among different signatures from
the same user. Further, the two-finger signature correlation (i.e.,
f7) is a single value instead of a feature vector. Finally, the f̄6
and f̄7 along with {f̄u, 1 ≤ u ≤ 5} and {w̄u, 1 ≤ u ≤ 5} are
used for the user signature profile.

2) Distance Score Computation: We propose to use the
weighted Manhattan distance to compare the input signature to
a user’s signature profile. Different computation procedures are
also carried based on whether single-finger or multiple-finger
are used to sign the signature.

Single-finger Based Signature. For single finger-based sig-
natures, we define the distance score as the difference between
the u-th feature obtained from the input signature {fu, 1 ≤ u ≤
5} and the u-th average reference feature {f̄u, 1 ≤ u ≤ 5}
stored in the user signature profile. Specifically, the distance

score is calculated by using the weighted Manhattan distance
with the weights w̄u:

du =

M
∑

i=1

L
∑

j=1

∣

∣fu(i, j)− f̄u(i, j)
∣

∣ w̄u(i, j) (7)

In practice, the distance values of different features may have
different ranges. For example, the distance between velocity
features usually has a range of [0, 0.04] while the distance
between coordinate features belongs to [0, 1]. We thus perform

distance normalization on each du as: d′u = du−meanu

stdu

, where

meanu and stdu denote the mean and standard deviation of
distance values of the u-th feature. Finally, the overall distance
score is computed by averaging all the normalized distance

values over 5 features: d̄ =

5
∑

u=1

d′

u

5 .

If d̄ is less than a predefined threshold, the input signature
is accepted by the system. Otherwise, the system rejects the
signature.

Multiple-finger Based Signature. For multiple finger-based
signatures, two additional features, the distance pattern between
fingers (i.e., f6) and the two-finger signature correlation (i.e.,
f7) are included in computing distance scores using Manhattan

distance as: d6 =
L
∑

j=1

∣

∣f6(j)− f̄6(j)
∣

∣ and d7 =
∣

∣f7 − f̄7
∣

∣.

Similarly, we perform distance normalization on d6 and d7
to derive d′6 and d′7, respectively. The final distance score is
then computed by averaging all the normalized distance scores

over all 7 features: d̄ =
7
∑

u=1
d′u/7. Finally, if d̄ is less than a

predefined threshold, the input signature will be accepted by
the system and vice versa.

VI. SIGNATURE NORMALIZATION AND INTERPOLATION

In this section, we present the signature normalization
and interpolation algorithms. We assume a signature is
performed with one or more fingers (i.e., the number
of fingers is denoted as M ), the raw x and y coordi-
nates, and the pressure of a signature are represented as:
{(x(i, j), y(i, j), p(i, j)) , 1 ≤ i ≤ M, 1 ≤ j ≤ Li}, where Li

denotes the number of touch events of the signature.

A. Signature Normalization

Users may write their signatures with various sizes, orien-
tations, and regions on the touch screen under various signing
conditions. We thus need to normalize users’ signatures such
that they have the same size, orientation and origin in the
signature coordinate system to facilitate signature comparison.
Existing work however did not study this problem system-
atically as the users use a stylus instead of fingers to sign
their signatures in a small bounded rectangular region [5], [6],
[15]. In our work, we perform systematical study on signature
normalization via the sequential steps of translation, scaling
and rotation.

1) Translation: Translation aims to move the geometric cen-
ter of the signature to the origin of the signature coordination
system such that all signatures can be at the same position for
comparison. To achieve this, we define the geometric center
of a signature as (xc, yc) where xc is computed as follow:
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xc =
M
∑

i=1

Li
∑

j=1

x(i, j)

/

M
∑

i=1

Li. Similar computation is done for

yc as well. The signature can be then translate to the origin of
the coordinate system by subtracting xc and yc along vertical
and horizontal directions, respectively.

2) Scaling: Scaling is to enlarge or shrink the signature
by a scaling factor in all directions such that signatures can
be of the same size. However, identifying the scaling factor
is challenging as signatures are usually written with different
orientations by users. For this reason, we propose to use a
circle, which is a geometrical shape that is invariant to the
writing orientations, as a reference to derive the scaling factor.

Specifically, we generate C concentric circles with different
radius {Rc, 1 ≤ c ≤ C} and place the center of the circles
as the origin of the coordinate system. The value of Rc is
chosen based on pre-defined ratios {Pc, 1 ≤ c ≤ C} which is
defined as the number of touch points within a circle over
the total number of touch points. The scaling factor based on
circle Rc thus can be calculated as αc = Pc/Rc, with the
coordinates of the signature scale to a range of [−1, 1]. We
then average the scaling factors derived from all circles and
use the averaged value (i.e., α) as the scaling factor of the
signature. Finally, we perform the scaling by multiplying each
sample of a signature with the signature scale factor α. In this
work, we empirically choose C = 2 circles with P1 = 0.5 and
P2 = 0.8, respectively.

3) Rotation: Rotation aims to rotate signatures such that
they are all parallel to the x-axis to facilitate the signature
comparison. To identify the rotation angle θ, we examine the
average distance between the positions of touch events and
two reference points on the x-axis as a function of the rotation
angle. The rationale behind this is that the average distance
should be minimum when θ is equal to the writing angular of
the signature (i.e., the signature becomes parallel to the x-axis).

In particular, we empirically select two points (−0.5, 0)
and (0.5, 0) on x-axis as reference points. We then rotate
the signature to locate the angle θ with which the average
Euclidean distance between the signature’s touch events and
two reference points becomes minimum. We then rotate the
whole signature counter-clockwise by the angle θ. After this,
the signatures are normalized to the same origin, size and
orientation in the signature coordinate system.

(

x′(i, j)
y′(i, j)

)

=

{

α

(

cos θ − sin θ
sin θ cos θ

)(

x(i, j)− xc

x(i, j)− yc

)}

where 1 ≤ i ≤ M, 0 ≤ j ≤ Li.

B. Signature Interpolation

The user usually writes signatures at different speeds which
produce different numbers of touch events of signature. To
deal with variable number of touch events, our system fur-
ther performs signature interpolation. This step allows us to
perform robust signature verification by directly measuring the
similarity between two identical length of touch events.

To perform signature interpolation, we extend the sequence
of signature touch events (i.e., x and y coordinates and pres-
sure) to a reference length L by using cubic spline interpo-
lation [19]. Further, we choose a large L (e.g., L = 1000
samples) so that it is large enough to include the length of touch

events from any user’s signature under normal signing process.
The sequence of the x coordinates after interpolation are repre-
sented as (the same as y coordinates): {x′′(i, 1), ..., x′′(i, L)} =
interp ({x′(i, 1), ..., x′(i, Li)}) , 1 ≤ i ≤ M . Similar-
ly, the sequence of signature pressure is represented as:
{p′′(i, 1), ..., p′′(i, L)} = interp ({p(i, 1), ..., p(i, Li)}) , 1 ≤
i ≤ M .

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our user
signature verification system with more than twenty users on
Google Nexus smartphones over a time period of six months.

A. Experimental Methodology

We use two Google Nexus smartphones equipped with mul-
tiple touch screens to collect signatures from 25 volunteer users
over six months. Each Google Nexus smartphone is equipped
with a 1.5 GHz quad-core Krait processor and runs Android
operation system. We then develop an Android application to
collect signatures from users. Specifically, the touch events
triggered by each finger are written into a log file on the
smartphone when the users sign their signatures on touch
screen. During the experiments, we set the sampling rate as
50 Hz and the duration between two consecutive touch points
is 20 ms. We conduct experiments in representative phone
placements including holding the smartphone in a user’s hand
or placing the phone on a table. Our experiments are also
conducted in different locations such as offices and apartments.

1) Evaluation Scenarios: We conduct experiments with 25
volunteers (ranging from 17 to 34 years old) to evaluate the
effectiveness of our signature verification system. A size of
25 volunteers is a typical size for verification studies [2]. We
evaluate our system under three scenarios including one normal
user signature verification scenario and two representative
attack scenarios.

Signature Verification: Each user conducts normal sig-
nature verification without having the knowledge of others’
signatures. We collect a set of genuine signatures from each
user to construct his/her signature profile, and use the rest of
signatures to test the signature verification. In this scenario,
users are told to sign their signatures using their own signatures
and signing styles during signature signing process.

Random Attack: The attacker only has the knowledge of
the spelling of a victim’s signature without the knowledge of
the geometric layout of the signature. More specifically, we
choose 8 users as victims. We then select another 15 users as
attackers whose handwriting fonts and speeds are similar to the
selected victims to launch the random attack. In this scenario,
attackers sign signatures with the same spelling of the victim’s
signature during the signing process.

Observe and Imitate Attack: The attacker not only has the
knowledge of the spelling of the victim’s signature but also
observes how a legitimate user signs his signature. Similarly,
we choose 8 users as victims and select another 15 users
as attackers. In this scenario, attackers possess the geometric
layout of the victim’s signatures and then perform imitation
attacks.
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(a) Signature verification (b) Random attack (c) Observe and imitate attack

Fig. 4. Comparison with the existing schemes under signature verification scenario and two representative attack scenarios.

2) Metrics: We use the following metrics to evaluate the
effectiveness of our signature verification system.

Receiver Operating Curve (ROC): We use ROC to
evaluate how the true positive rate and false positive rate of
our system changes when the threshold is varied. Specifically,
we let tp, tn, fp and fn denote the total number of true
positives, true negatives, false positives and false negatives.
The true positive rate (TPR) and false positive rate (FPR) are
defined as TPR = tp/(tp+ fn) and FPR = fp/(fp+ tn),
respectively.

Equal Error Rate (EER): It is defined as the rate at which
the FPR is equal to one minus TPR (i.e., the location on a
ROC curve where FPR = 1 − TPR). The EER shows the
trade-off between two error types and lower EER represents
better performance.

B. Performance Comparison with Existing Schemes

In the first set of experiments, we evaluate the effectiveness
of our proposed signature verification system in Figure 4 by
comparing it with two existing signature verification schemes:
a histogram based signature verification system [7] and Touch-
In [2]. In Figure 4, we use "Our scheme (single finger)" and
"Our scheme (two fingers)" to denote the results from our
system using one and two fingers, respectively. The histogram
based signature verification system [7] captures the distribution
of attributes such as the first or second order derivative of
coordinates derived from the signature for verification, and we
utilize the legend "Histogram" to denote it in the results. The
TouchIn authentication system [2] first asks a user to draw
curves on the touchscreen, and then verify the user based on
the properties such as the curvature and acceleration of the
drawing curves. To compare the performance of our system
to Touchin, we apply Touchin to handle signatures instead of
curves as originally proposed. And the results are denoted as
"TouchIn". Additionally, we evaluate our system performance
when only using extracted features without considering the key
technique, i.e., critical segments, for signature verification. This
scenario is similar to the existing stylus-based online signature
verification schemes [5], [6], which treat the user’s signature
as a whole. We use the legend "Our scheme (without critical

seg.)" to denote the results from such scenarios.

Figure 4 (a) to (c) depict the ROC of signature verification
under three scenarios of our proposed system and these two
existing methods. We observe that our system can achieve a
significant higher true positive rate with lower false positive
rate than that of existing methods. In particular, our system
achieves nearly 100% true positive rate for two-finger and over
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Fig. 5. Robustness study under different number of signatures for user
signature profile construction.

95% true positive rate for one-finger when the false positive
rate is 5%. However, the true positive rate of the existing
methods is less than 85% when the false positive rate is 5%.
Further, when comparing these results with those we obtained
without using critical segments, we observe that including
critical segments yields significantly better results. This is
because our system captures the intrinsic signing behavior of
the user by identifying the critical segments and further utilizes
a rich set of information provided by multi-touch screen.
Moreover, we find that two-finger based signatures can give
us higher accuracy due to these two physiological features are
used in the two-finger case.

From Figure 4 (b) and (c), we further observe that our system
is much more robust than existing methods under both random

attack and observe and imitate attack. Specifically, our system
achieves more than 95% true positive rate with less than 10%
false positive rate, while existing methods only have about 85%
true positive rate with 10% false positive rate. This is because
our system captures the user’s signing behavior during the
signing process which is hard for a adversary to observe and
imitate. These results indicate that our proposed system has
significant better performance and is also more robust under
attacks than existing schemes [2], [7].

C. Impact of User Signature Profile Construction

We study the robustness of our system when different num-
ber of signatures (i.e., D) are used in the user signature profile
construction. Specifically, we evaluate the performance of our
signature verification system when the size D equals to 5, 10
and 20, respectively. Figure 5 (a) and (b) show the Equal Error
Rate (EER) under the scenarios of regular signature verification

and observe and imitate attack under different numbers of
signature used for signature profile construction. We observe
that the EER decreases as the number of training signatures
increases due to using a larger D can capture the user’s
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Fig. 6. Robustness study under different number of applied features.

invariant signature pattern better. In particular, our system has
around 5% EER for single-finger and less than 2% EER for
two-finger when D is equal to or larger than 10. Moreover,
even if under the observe and imitate attack, our system has
less than 5% EER with two-finger when D is 10 or 20. The
results indicate that a number of 10 signatures is sufficient
for our system to achieve a low EER under both signature

verification and observe and imitate attack scenarios.

D. Impact of Features

We further evaluate our system by utilizing different number
of features for signature verification. Specifically, we evaluate
the system performance by varying the number of features used
in the system from 2 to 7. The denotations of the legends
are shown in the Table I. Figure 6 (a) and (b) plot the
ROC under the scenarios of regular signature verification and
observe and imitate attack with varying number of features. We
observe that the accuracy increases as the number of features
increases. This is because with more features, our system can
capture the user’s intrinsic behaviors within the signature better.
In addition, we found that five or more features result in
acceptable performance with over 90% true positive rate and
less than 5% false positive rate in all these three scenarios.
Furthermore, similar true positive rate and false positive rate
are achieved even if the attacker performs imitation attacks.
This demonstrates that our system is robust against malicious
attacks. Finally, we observe that our system is also robust to
different phone holding positions such as having a user holding
the smartphone in his hand or placing it on a table. Due to
space limitation, we omit these results and include them in our
extended report.

VIII. CONCLUSION

In this paper, we present a critical segment based online
signature verification system to secure mobile transactions on
mobile devices. The proposed system identifies the critical
segments, which remain invariant within a user’s signature, to
capture the user’s intrinsic signing behavior. By leveraging the
rich set of information enabled by touch screens, our system
extracts useful features to describe both the geometric layout of
the signature as well as a user’s behavioral and physiological
characteristics during the signing process. Moreover, our sig-
nature normalization and interpolation methods enable robust
signature verification in the presence of signature geometric
distortions caused by different writing sizes, orientations and
locations on touch screens. Extensive experiments with 25
users over six months time period show that our proposed
system can achieve better performance than existing methods

Legend Feature

2 features x, y coordinates
3 features x, y coordinates + pressure

3 features(velocity) x, y velocity + pressure

5 features
x, y coordinates

+ x, y velocity + pressure

6 features(distance)
x, y coordinates + x, y velocity

+ pressure + distance pattern between fingers

6 features(correlation)
x, y coordinates + x, y velocity

+ pressure + two-finger signature correlation
7 features all features

TABLE I
IMPACT OF FEATURE NUMBER STUDY: FEATURES USED IN EACH SCENARIO

and is robust to signature forging attacks including random
attack and observe and imitate attack.
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